
the divergence between coefficients =g obtained with high inertia sensors and an inertia 
calculated by Eq. (i) gradually decreases. 

The character of the change in heat liberation coefficient exerted no marked effect 
on sensor inertia (signals of various form were considered: N- and H-shaped, trapezoidal 
and intermediate forms). 

Mathematical modeling results indicate that if the deviation of instantaneous ~g values 
from the mean value comprises less than 15-20% the gain in accuracy achieved by use of sen- 
sors with the required inertia is not great. 

Increase in the frequency of ~g change imposes more rigid limitations on the sensor in- 
ertia. 

NOTATION 

T, wall temperature; Tg, hot gas temperature; Ta, air temperature; Ti, initial wall 
temperature; ~g, heat liberaEion coefficient between hot gas and wall; =a, heat liberation 
coefficient between air and wall; a, thermal diffusivity coefficient of wall material; k, 
thermal conductivity of wall material; 6, wall thickness; A and B, steady state temperature 
field coefficients; x, coordinate; ~, time. 

EFFECT OF TEMPERATURE MEASUREMENT ERRORS ON THE ACCURACY 

OF BOUNDARY CONDITIONS 

A. A. Aleksakhin and S. V. Ena UDC 536.2.02 

Results are presented from an evaluation of the accuracy of the solution of 
an inverse heat-conduction problem for an infinite plate with nonsymmetrical 
heat-transfer boundary conditions. 

The accuracy of the determination of boundary conditions for heat transfer was analyzed 
in relation to the accuracy of the input data (temperature measurements), with application 
to the measurement of nonsteady heat flows by means of alpha calorimeters. Assuming that 
the temperature field within the sensitive element of the calorimeter is kept uniform, it 
is possible to reliably determine the coefficient of heat transfer between the end of the 
calorimeter core and the flow of heat carrier by using the solutions of the inverse heat- 
conduction problem for an infinite plate. Then the temperature field of the sensitive 
element of the gradient alpha calorimeter is described by the Fourier equation 

with the boundary conditions 

O0 (X, Fo) _ O2e (X, Fo) ( 1 )  
0 Fo OX z 

0@(1, Fo) = B i ( F o ) [ Q ( F o ) - - @ ( 1 ,  Fo)], (2)  
OX 

o (o, Fo) = Oo, e (x,  o) = f (x). (3 )  

Given experimental values of the temperature of the heat carrier Oc(Fo) and the temperature 
on the heated end of the sensitive element 0(I, Fo) =~ (Fo), the solution of the problem 
for these boundary conditions has the form [i] 

Bi (Fo) = {[cp (Fo) - -  q) (O)l q- 2 2 [q0 (Fo) - -  Y~ (FoJl}/[Oo (Fo) - -  q) (Fo)], (4)  
n = l  
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Fig. 1. Results of solution of the inverse heat-conductlon 
problem: a) initial data [l) temperature of the heat car- 
rier; 2) temperature of the end of the rod at Bi 0 = 10]; b) 
solution in the presence of random errors in the measurement 
of the temperature of the end of the rod,; c) solution when 
the temperatures are entered without distortions. 

Fig. 2. Effect of errors of measurement of the temperature 
of the heat carrier 8c(Fo) and the end of the rod ~(Fo) on 
accuracy of determination of the heat-transfer boundarycon- 
ditions: I, 2, 3, 4) AO c = -0.03; -0.01;0.01; 0.03 at A ~ = 
O; 5, 6, 7, 8) A~=  0.03; 0.01; -0 .01;  -0.03 at AO c = O. 

where Yn(fo) is the solution of the system of equations 

1 Y~(Fo)q-F~(Fo~=~(Fo), n= I, o, ; u, =n~. (5) 
o . , . . . .  . 

Solution (4)was obtained using the method proposed in [2] for solving an inverse beat-con- 
duction problem. 

We propose to solve system (5) by the finite differences method. This approach is 
valid because experimental data on temperature is us.ually obtained in the form of tables 
of values over certain intervls of time AFo. After Yn(Fo) is replaced by finitediffer- 
ences, the recursion formula for the determination of Yn(Fo) has the form 

V~.,, = [Y..~-x- ~A Fo~(kA Fo)]/(1 ~ ~]AFo). (6) 

With allowance for the finite number of terms of the series, Eq. (4) is changed to the 
form 

Bi (kA Fo) --- 

A t 

[qD (kA Fo) -- ~ (0)1 + 2 ~] [,r (kA Fo)--  Y..~I 
k=l (7)  

@c (kA Fo) -- ~ (kA Fo) 

Thenumbe= of terms in the series can be determined on the basis of the condition of 
ensuring a prescribed degree of approximation of the original function by Yn,k, i.e., 
I~(kAFo) - Yn,kl < s" 

To realize a solution, we wrote a program for an ES series computer. The initial data 
for the solution of the control problems was the temperature distribution in the plate [3]. 
The calculations were performed for the range of Blot numbers 0.5 ~ Bi 0 ~ i0. The time 
step was varied wiZhin the range 0.01 ~ AFo ~ 0.1. 

Analysis of the results shows that at values of the time interval 0.02 $ AFo ~ 0.04, 
the error of the solution of the inverse problem 6 e = (Bi I - Bi0)/Bi0 is no greater than 3%. 
Here, Bil is the value of the Blot criterion obtained from the solution of (7) and averaged 
over the time interval NAFo. 

The effect of the accuracy of the initial data was analyzed by the sample error method. 
The size of the systematic and random errors in ambient temperature and the temperatl/re of 
the end of the calorimeter core is determined by the degree of approximation of the solution 
of the direct problem. 
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It can be seen from Fig. I that the influence of random errors in the data on the 
temperature of the end (A~= 0.1~(Fo)) does not extend to the previous moments of time and 
relaxes over the next 2-3 solution steps. Possible random errors in the measurement of the 
heat carrier temperature also lead only to local perturbations and do not disturb the con- 
vergence of the solution. 

The systematic error in the temperature values is given as follows: 

for the temperature of the end of the sensitive element 

~' (Fo) = ~o (Fo) _ k~ (Fo), 

for the temperature of the heat carrier 

O'c (Fo) = @c (Fo) _+ kOc (Fo), 

where q0 '(Fo) and O c' (Fo) are approximate values of temperature; ~ (Fo), Oc(Fo) are exact 
values of temperature; k successively takes values of 0.01, 0.03, 0.05, and 0.i. 

Figure 2 shows graphs for determining the corresponding errors in the calculated rate 
of heat transfer 6 9 = (Bi - Bi0)/Bi0 = f(Bi0, Aq0) and 6 c = (Bi - Bi0)/Bi 0 = f(Bi0, A•c). 

The total error of the heat-transfer boundary conditions is determined not only by the 
absolute values of its components 6~ and 6c, but also by their signs. When the systematic 
errors in the measurement of the temperatures ~ and 0 c are of the same sign, the calculated 
values of the Blot criterion are nearly the same as the result of the solution of the in- 
verse problem in the case where the initial data is entered without distortions. The pres- 
ence of errors of different signs leads to serious loss of accuracy. In this case, the 
total error of the solution can be found by adding the absolute values of 69 and 6 c - each 
of which is determined from Fig~ 2. The following relation can be used to evaluate the 
total relative error 

60= (~ + ~) (1  + ~ ) -  1. 

The data in Fig. 2 can be used to evaluate the allowable values of error in the tempera- 
ture measurement, as well as to choose design parameters for alpha calorimeters. Thus, for 
example, an accuracy 60 ~ 20% is assured in the solution of the inverse problem within a 
broad range of Blot numbers when the systematic error of the temperature measurement is no 
greater than 1%. It can be seen from Fig. 2 that the error of the solution decreases with 
a decrease in the Biot number. In connection with this, the sensitive element of the 
calorimeter should be as small as possible. It is best to use materials with a high ther- 
mal conductivity to make the element~ Given a suitable choice of material (X) and dimen- 
sions (R) for the core of the calorimeter, it is possible to solve the inverse problem 
with a maximum error of 5-7%. 

NOTATION 

O(X, Fo), relative temperature; X, relative coordinate; Fo = a~/R 2, dimensionless time; 
AFo, step of Fourier number; Bi = ~R/X, Biot criterion; ~ (Fo) = 0(I, Fo), temperature of 
heated end of rod; Oc, temperature of heat carrier; A~, error of wall-temperature measure- 
ment; ~Oc, error of measurement of heat'carrier temperature; 6~, error of determination of 
Biot number in the presence only of a wall-temperature measurement error; 6c, error of de- 
termination of heat-transfer rate in the presence only of an error in measurement of heat- 
carrier temperature; 6~, total error of determination of Blot number from inaccuracies in 
temperature measurement; 60, total relative error. 

1| 
2. 
3. 
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